WRRF Workshop
December 10, 2012

Converting from Labview
to C++,

Experience with the 2012
Beta C++ tools,

And other miscellaneous
robot programming hints

Michael Smith

Jeremy Lee

Aaron Wang

John Best, jsbest@pacbell.net

The Switch to C++

Team 604 had been using Labview since the cRio controller
was introduced

Difficult to read/understand/maintain
Various timeout errors not understood in 2011
Programmers allowed code to devolve into spaghetti
This is not necessarily an inherent problem with Labview —it's just us

Team interest

Adult team mentors were useless for Labview

C++ Boot Camp

Interested students and mentors met for about 2 hours roughly

once a week over several months
Students did a few elementary workshops on C
Allinstalled the 2011 tools on their own machines
50% first session, most of the rest in second session
All got basic "Simple Robot” drive code running on 2010 and 2011 robots
Required modifying template for Tank Drive and Victors
Each individual did code/test iteration, with help from others, as needed
A few moved on to program all functionality on 2010 and 2011 robots
(shifting transmissions, ball kicker, arm/gripper, etc.)
One student simultaneously fixed bugs in 2011 Labview code for use at
Calgames, installed beta code for C++, and ported Labview code to C++
(two different machines). Debugging took an extra 2 hours.

Now have several students with ready to get started on 2012 task

Installation

Gather together all the things you need
National Instruments (LabView) DVD
WindRiver DVDs (there will be two for 2012)
FRC updates for NI tools
FRC updates for WindRiver tools
FIRST is not completely consistent on where instructions and updates

get put on the WEB. Look in
Installation disk readme files
decibel.ni.com/content/community/first
first.wpi.edu/FRC/frccupdates.html
firstforge.wpi.edu/sf/projects/wpilib
FIRST FRC mentor resources pages
Look on 604robotics.com after kickoff — we will update where things are

Copy everything to USB sticks, and then to the hard drive of
target computers. Its faster to install from the hard drive.

Installation (cont’d)

Print and read the FRC README on the WindRiver disk
Print and read the C/C++ Getting started manual

Install from the NI/Labview disks

Crio Imaging tool
Driver’s station (not required, but it is very nice to have driver’s station
on the same computer you are compiling and downloading from).

Install the WindRiver disks
Install the NI/Labview updates
Install the WindRiver updates

Installation Hints

Follow the instructions
Need to uninstall last year’s tools first
Make sure everything in WindRiver disk gets installed
Licensing can get all goofed up if you don’t follow the detailed instructions

Watch out for firewall
We were successful leaving Windows firewall and antivirus active if we
noticed and checked all the “allow” boxes that popped up.
If you mess this up, you will need to open your firewall advanced settings
and allow the FRC/NI/Windriver stuff. This is the thing to look for if you
can’t connect to the robot after you are sure you have configured the
network settings correctly (which requires manually setting the IP address
to 10.xx.yy.5 or.6 (xx.yy is your team number).
It's probably better to disable firewall and antivirus during installation

We were successful with Windows XP, Windows 7 32bit, Windows 7
64 bit, Macbooks running Windows under BootCamp, and (maybe)
a Macbook running Windows in a virtual machine.

Other Getting Started Hints

Only ethernet Port 1 on the cRio will work. The other is for the

camera and they are not connected together.
New small cRio has one ethernet port; camera attached to router

The DIP switches on the cRio should be OFF, except Console Out,
which should be ON
We had problems reliably connecting to the cRio with the 2012 code
unless Console Out was on. (likely was just module mess up — see below)
No DIP switches in new cRio; set via imaging tool.

The slot assignments for the i/o modules are different for 2012
You MUST put the modules in the correct slots, or nothing will work. Error
messages may be cryptic (likely fixed by kickoff).
Slot 1: analog module
Slot 2: digital module
Slot 3: solenoid module

An Estop button is not required (good). The driver station
spacebar is the new Estop button and cannot be changed
(beware). Enter key is the disable button.

Debugging C++ Code

Follow the “Getting Started with C++..” manual to configure
VxWorks. Itis easy to do if you follow the instructions,
screen by screen. Its impossible to guess how to do it.

The cRio must be reset to clear code from memory before

loading new code.

Cycle the robot power, OR
In the Remote Systems window, right click on VxWorkséx...., and click

on “Reset Connected Target”
Deploying code (writing to non-volatile memory in the cRio
so that it will run when you power up) is done by going to the
FIRST/deploy menu after building. You must undeploy old
code before either downloading code for debugging or
deploying new code.

G/ G+ + Getting Started Guide

Wozrcester Polytechnic Institute Robotics Resource Center

FIRST"

Brad Miller, Een Strecter, Beth Finn, Jerry Mosrizon, Dan Jones, Ryan O'Meara, Derek White, Ste phanie
Hoag

Rev 3.0

October 7, 2011

Further C++ Beta Test Comments

All of the C++ code that we tried prior to the beta test while
getting ready to move from LabView to C++ worked without
modification with the 2012 libraries

There is new programming model that is described in the
"WPILib Robot Programming Cookbook” that is new for this

year
Robot commands are defined and programmed separately from the
subsystems on the robot which execute the elements of the
commands
The provides a cleaner model for complex code, particularly if
developed by multiple programmers
The value is less clear for a typical robot implementation that is
relatively simple
We did not implement code using this model on our robot

Elementary C

#include <stdio.h>

int main()

{

printf (“hello, world\n”) ;
return O;

}

Variables in C

#include <stdio.h>
int a;

float findcirc(float dia)

{
return 3.14159265 * dia;

}

int main|()

{
float c;

a = 4;

c = findcirc(a) ;

printf (“circumference is %$f\n, c”);
return O;

Classes In C++

A class is a user defined type that can represent a

complicated object
Includes multiple variables to represent the state of the object
Includes functions to define the behavior of the object

Classes can be based on a previously defined class
Replace stuff you don't' like
Add new capability

Class Date {
public:
Date(int y, int m, int d);
void add day(int n);
int month() ;
//..
Private:
int y, m, d;
};

Date mydate;

Example: SimpleRobot Modified

3y Device Debug - Robot2011CrushDemo/Robot2011 Crush.cpp - Wind River Workbench
Eile] Edit Refactor MNavigate Search Project Analyze Run Target FIRST Window Help

New

Open File...

Close

Close All

Save

Save As...
Save All
Revert
Rename...

Refresh

Convert Line Delimiters To
Print...
Switch Workspace

Import...

Fyvnnrt

Alt+Shift+N »

Ctrl+W

Ctrl+Shift+W

Ctrl+S

Ctrl+Shift+S

F5

Ctrl+P

B
i
\E

I

[

B e [@

n

W

Wind River Workbench Project...

VxWorks Boot Loader / BSP Project

VxWorks Downloadable Kernel Module Project
VxWorks ROMEFS File System Project

VxWorks Image Project

VxWorks Real Time Process Project

VxWorks Shared Library Project

User-Defined Project

Native Application Project

Project...

Build Target
Folder
File

File from Template
Example...

Other...

Select a wizard

Creates a new VxWorks downloadable kernel module sample project

Wizards:
type filter text

1= Native Sample Project
(17 VxWorks Downloadable Kernel Medule Sample Project
1B VxWorks Real Time Process Sample Project

< Back]L Net> | Finish | Cancel |

. @ NewPro;ect Sample 'i'@

Sample Project Template W —
Select a sample project template. @
Available Examples: Information:

= C++ Demonstration Program FRC Simple Robot Template

= FRC 2010 Vision Demonstration Program This program is the simplest sample program that

=% FRC Dashboard Data Example implements the full field control and shows the use of

= FRC Default Program (Current with imaging tool) :Pc:re \A;a::h:lggr;c:;nser. This is an excellent starting point

=% FRC Default Program (Original factory image) .y N e _

{& FRC Driver Station LCD Text This program snmply drives forvx'/ard for2 secon'ds' in the
Z Autonomous peried and does simple arcade driving

=2 FRC Gyro sample program during the Operator Control pericd.

=% FRC Line Tracker Sample Program
=% FRC Sample Simple C Template
I=2FRC Simple Robot Template:

= The Ball Demonstration Program

=% The C demo Demonstration Program

=% The Cobble Demonstration Program

=2 The Hello World Demonstration Program

=% The Panel Demonstration Program

=% The TIPC Inventory Demonstration Program

= The TIPC Performance Demonstration Program
=% The TIPC Test Suite

@ , Next > [Finish] [Cancel]

File Edit Refactor
MO-EH& RN i i -0-Q
""" €] Robot2011Crush.cpp | €] *Robot2011Crush.cpp
#include "WPILib.h"

Navigate Seérc,h ‘,,B,rojec,t Analyze Target FIRST Run Window Help
DAY THUE vi HFroora

/iviv
Ei * This is a demo program showing the use of the RobotBase class.

* The SimpleRobot class is the base of a robot application that will automatically call your
"""" | * Autonomous and OperatorControl methods at the right time as controlled by the switches on

= * the driver station or the field controls.
k/l
class RobotDemo : public SimpleRobot
{

RobotDrive myRobot; // robot drive system
Joystick stick; // only joystick

public:

RobotDemo (void) : Here is the default Slmple

myRobot (1, 2), // these must be initialized in the same order

stick (1) // as they are declared above. Robot example COde-

{
nmyRobot.SetExpiration(0.1);
}
/ww
* Drive left & right motors for 2 seconds then stop
wy.
void Autonomous (void)
{
myRobot.SetSafetyEnabled (false) ;
myRobot.Drive (0.5, 0.0):; // drive forwards half speed
Wait(2.0): /7 for 2 seconds
myRobot.Drive (0.0, 0.0): // stop robot
}
/arar
* Runs the motors with arcade steering.
WY
void OperatorControl (void)
{
myRobot.SetSafetyEnabled (true) ;
while (IsCperatorControl())
{
myRobot .ArcadeDrive (stick); // drive with arcade style (use right stick)
Wait (0.005); // wait for a motor update time
}
}

START_ ROBOT_CLASS (RobotDemo) ;

—

—

#include "WPILib.h"

/ﬁ*
* This is a demo program showing the use of the RobotBase class.
* The SimpleRobot class is the base of a robot application that will automatically call your
* Autonomous and OperatorControl methods at the right time as controlled by the switches on
* the driver station or the field controls.

*/
class RobotDemo : public SimpleRobot
{ » Strip out the autonomous for
RobotDrive myRobot; // robot drive system .
Joystick stick; // only joystick this demo so you can see
publie: more at once.
RobotDemo (void) :
myRobot (1, 2), // these must be initialized in the same order
stick(1l) // as they are declared above.
{
myRobot.SetExpiration(0.1);
}

void Autonomous (void)

void OperatorControl (void)

{
myRobot.SetSafetyEnabled (true)
while (IsOperatorControl())
{
myRobot .ArcadeDrive (stick); // drive with arcade style (use right stick)
Wait (0.005); // wait for a motor update time
}
}

START ROBOT_ CLASS (RobotDemo) ;

l.€] Robot2011Crush.cpp l l.€] Robot2011Crush.cpp
#include "WPILib.h"

/* Port configuration for sensors and actuators. */
fidefine LEFT DRIVE JOYSTICK USB_PCRT 3
f#define RIGHT DRIVE JOYSTICK USB_PORT 2

#define FRONT LEFT MOTOR PORT 3
#define FRONT RIGHT MOTOR PORT 2
#define REAR LEFT MOTOR PORT 4

aiadiis e e We like Victors better than Jaguars
class RobotDemo : public SimpleRobot (they seem to be more reliable)l SO
{ .

Victer frentLeftMotor: define some Victors and replace

s i e defaults in RobotDrive.

Victor rearLeftMotor;
Victor rearRightMotor;

RobotDrive driveTrain;

Joystick joystickDriveLeft:;
Joystick joystickDriveRight:

public:
RobotDemo (void) :

frontLeftMotor (FRONT LEFT MOTOR PORT),
frontRightMotoxr (FRONT_RIGHT MOTOR_PORT),
rearLeftMotor (REAR LEFT MOTOR PCRT),
rearRightMotor (REAR RIGHT MOTOR PORT),
driveTrain (frontLeftMotor, rearLeftMotor, frontRightMotor, rearRightMotor),
joystickDriveLeft (LEFT_DRIVE JOYSTICK USB_PORT),
joystickDriveRight (RIGHT DRIVE JOYSTICK USB_PORT)

GetWatchdog () . SetEnabled (false) ;

void Autonomous (void)
{

GetWatchdog () .SetEnabled (false) ;

class RobotDemo : public SimpleRobot
{

Victor frontLeftMotor;

Victor frontRightMotor;

Victor rearLeftMotor;

Vicrorimeanil gt aton: Nothing else changes if you like
RobotDrive driveTrain; Arcade drive

Joystick joystickDriveleft:;
Joystick joystickDriveRight:;

public:
RobotDemo (void) :

frontLeftMotor (FRONT_LEFT MOTCR PORT),
frontRightMotor (FRONT_RIGHT MOTCOR PCRT),
rearLeftMotor (RERR_LEFT MOTCR PCRT),
rearRightMotor (REAR RIGHT MOTOR PORT),
driveTrain(frontLeftMotor, rearLeftMotor, frontRightMotor, rearRightMotor),
joystickDriveLeft (LEFT_DRIVE JOYSTICK USB_PORT),
joystickDriveRight (RIGHT DRIVE JOYSTICK USB_PORT)

GetWatchdog () .SetEnabled (false) ;

void Auntonomous (void)

{
GetWatchdog () .SetEnabled (false) ;

void OperatorControl (void)
{
driveTrain.SetSafetyEnabled(true):;
while (IsOperatorControl())
{
driveTrain.ArcadeDrive (stick); // drive with arcade style (use right stick)
Wait (0.005); // wait for a motor update time

Change one line of code to convert to Tank Drive

void OperatorControl (void)
{

driveTrain.SetSafetyEnabled(true):;

while (IsCperatorControl())
{

driveTrain.TankDrive (jJoystickDrivelLeft, joystickDriveRight)ﬂ

[

SOESELT = pRY) SLE, U, Ry SRR rot i

Two speed transmission required pneumatics, so define the compressor, and a
solenoid valve to actuator the shifter. Initialize it in the Robot constructor

Joystick joystickDriveRight;

Compressor* compressorPump;

DoubleSolenoid solenocidShifter;

public:

RobotDemo (void) :

{

frontLeftMotor (FRONT_LEFT MOTOR_PORT),

frontRightMotor (FRONT_RIGHT MOTOR_PORT),

rearLeftMotor (REAR LEFT MOTOR PORT),

rearRightMotor (REAR RIGHT MOTOR PORT),

driveTrain (frontLeftMotor, rearLeftMotor, frontRightMotor, rearRightMotor),
joystickDriveLeft (LEFT_DRIVE JOYSTICK USB_PORT),
joystickDriveRight (RIGHT _DRIVE JOYSTICK USB_PORT),

solenoidShifter (SHIFTER_SOLENOCID FORWARD PORT, SHIFTER SOLENCID REVERSE PORT)

GetWatchdog () . SetEnabled (false) ;

compressorPump = new Compressor (PRESSURE_SWITCH PORT, COMPRESSOR PORT) ;

void Autonomous (void)

GetWatchdog () .SetEnabled (false) ;
compressorPump->Start ()’

Start the compressor on enabling the robot. The library compressor object
spawns a separate background task that reads the pressure switch and
controls the compressor. Turn it off on entering disable mode.

(@ Getting Started Resources | [¢] MyRobot.cpp £3

void Auntonomous (void)

{
GetWatchdog() . SetEnabled (false) ;
compressorPump->Start ()’

while (IsAutonomous ()) {

}

compressorPump->Stop () ;
}

void OperatorControl (void)

{
driveTrain.SetSafetyEnabled (true):
compressorPump->Start () ;

while (IsOperatorControl())

{
driveTrain.TankDrive (joystickDriveLeft, joystickDriveRight):

}

compressorPump->Stop () ;

}

void Disable (void) {
GetWatchdog() . SetEnabled (false) ;
compressorPump->Stop () ;

f#define GRIPPER SOLENOID FORWARD PORT &
#define GRIPPER_SOLENOID REVERSE PORT 5

#define MINIBOT DROP SOLENOID PORT 3 Define the shift buttons (tank drive

fdefine MINIBOT ACTIVATE SOLENCID PORT 8

#define SHIFTER SOLENOID FORWARD PORT 1 joystick trigger), and the shifter

fidefine SHIFTER SOLENOID REVERSE PCRT 2 : H H
- - - solenoid direction
iguration */
/* Driver Button Configuration */
f#define DRIVER SHIFT BUTTON 1

/* BActuator polarity and speed configuration. */

f#define SCLENCID SHIFTER HIGH POWER DIRECTION DoubleSolenoid::kForward

fdefine SCOLENOID SHIFTER LOW POWER DIRECTICON DoubleSolenoid::kReverse

class RobotDemo : public SimpleRobot
{
Victor frontLeftMotor:

TTe mtm v FawnmemeTNe mwlm el mwn e

void OperatorControl (void)

{

dripetoatn Sersafalyruablead(Chad) Check the shift buttons and actuate the

compressorPump->Start () ; .
valve accordingly
while (IsOperatorControl())

{
driveTrain.TankDrive (joystickDriveLeft, joystickDriveRight):;

if (joystickDriveLeft.GetRawButton (DRIVER SHIFT BUTTION) || joystickDriveRight.GetRawButton (DRIVER SHIFT BUTITON))

solenoidShifter.Set(SOLENOID_SHIFTER_HIGH_POWER_DIRECTION)d
else
solenoidShifter.Set (SOLENOID SHIFTER LOW_POWER DIRECTION);

compressorPump->Stop () ;

PID Arm Elevation Control

class PIDS

Anal

public PIDS
*analogPotentiometer;

ce {

public:

PIDSourceArm (AnalogChannel *aP)

-

analogPotentiometer = aP;

float BindToRange (float xValue, float upperBound = 1.0, float lowerBound = -1.0)

r
1
return (xValue>upperBound) ? (upperBound) ((xValue<lowerBound) ? (lowerBound)

float ProcessArmPosition(float potentiometerVoltage) { C

_FULLY FORWARD-POTENTICMETER VOLTAGE FULLY BACKW:

virtual double PIDGet() {

return ProcessArmPosition (analogPotentiometer->GetVoltage()):

class PIDOutputArm : public PIDOutput {
*motorArmLiftl;

Define the PID inputs and outputs to

ionLCD *dsLCD;

- behave then way your really want
e & rast) them to

virtual void PIDWrite(float output) {
output *= -0.8;
motorArmLiftl->Set (output):;

motorArmLift2->Set (output);
dsLCD->Printf (D

dsLCD->UpdatelLCD () ;

:kUser_Lizef, 1, "COutput: 3f", output):;

Initialize the PID. The real processing takes place in a separate thread at evenly spaced
time intervals

dsLCD—>Printf(DriverStationLCD::kUser;Lineé, 1, "---PID Control---", analogPotentiometer.GetVoltage()):
dsLCD—>Printf(DriverStationLCD::kUser;LineE, 1, "Status: Disabled"):;
dsLCD->Printf(DriverStationLCD::kUsez;LineG, 1, "Output: 0.000000");

/* PID Control */
PIDSourcelZrm *pidSourceArm = new PIDSourceArm(&analogPotentiometer):;
PIDController *pidArmController = new PIDController (1.3, 0.0, 1.6, pidSourceArm, new PIDOutputArm(&motorArmLiftl, &motorArmLift2, dsLCD)):

/* Drive Timer */
timerDriveTimer->Start();

while (IsOperatorControl () && IsEnabled()) {
GetWatchdog() .Feed(); // Feed the Watchdog.

Example: moving arm to preset positions

} else {
boolHeldInPlace = false;

boolTopPreset = joystickManipulator.GetRawButton(l1l):
boolBottomPreset = joystickManipulator.GetRawButton(10):;

if ((boolTopPreset || boolBottomPreset) && ! (boolTopPreset && boolBottomPreset)) { // Is a preset button pressed?
if (boolTopPreset && stateActivePreset!=1l) { // Go to the ground preset.
stateActivePreset = 1;
pidArmController->SetSetpoint (0.70);
pidArmController->Enable () ;
dsLCD->Printf (DriverStationLCD: :kUser Line5, 1, " b B
dsLCD->Printf (DriverStationLCD: :kUser Line5, 1, "Status: Ground"):

if (boolBottomPreset && stateActivePreset!=2) { // Go to the hanging preset.
stateActivePreset = 2;
pidArmController->Enable () ;
pidArmController->SetSetpoint (-0.78);
dsLCD->Printf (DriverStationLCD: :kUser Line5, 1, ") B
dsLCD->Printf (DriverStationLCD: :kUser Lineb, 1, "Status: Hanging"):

Labview Gripper Code

4[False ~pf

Use Forward for in

Button1
Button 4 ;
L Button 2 : -

Button 3 - -
Button 5
Button 6|

Joyrtick
Get

Labview Gripper Alternate

™[True vt
[spike1]

| SR [= 7Tl s

[Forwerd }————
Use Forward for in E ISpike 2

.] Relay Relay
Joystick 3 Button 1 e @~ SET
] B_: Gc‘l 1 Button 4 - é S Reverce ~
Button 2 H
= L 55
Button 3) S

Button 5} -
T v
Button 6 i w
H Spike 1

i Rela Fela
[— ser
T T : ISplke 2|

Relay Relay

B SET

C++ Gripper Code

Sometimes words are easier to understand than pictures

boolRotateUpButton = joystickManipulator.GetRawButton (MANIPULATOR ROTATE UP BUTTIOCN) ;
boolRotateDownButton = joystickManipulator.GetRawButton (MANTPULATOR ROTATE DOWN BUTTON) ;

doubleRollerMultipli = (joystickManipulator.GetZ()+1.0)/2.0;

H

{
t

if (joystickManipulator.GetRawButton (MANTPULATOR SUCK IN BUTTON))
motorArmRollerUpper.Set (ARM ROLLER UPPER_IN SPEED doubleRollerMultiplier);
motorArmRollerLower.Set (ARM ROLLER LOWER IN SPEED*doubleRollerMultiplier):
else if(joystickManipulator.GetRawButton (MANIPULATOR SPIT OUT BUTTION)) {
motorArmRollerUpper.Set (ARM ROLLER_UPPER_OUT_ SPEED*doubleRollerMultiplier);
motorArmRollerLower.Set (ARM ROLLER _LOWER_OUT_ SPEED*doubleRollerMultiplier);
else if (boolRotateUpButton && 'boolRotateDownButton) {
motorArmRollerUpper.Set (ARM ROLLER UPPER_IN SPEED*doubleRollerMultiplier):
motorArmRollerLower.Set (ARM ROLLER LOWER_OUT SPEED*doubleRollerMultiplier);
else if('boolRotateUpButton && boolRotateDownButton) {
motorArmRollerUpper.Set (ARM ROLLER UPPER OUT SPEED*doubleRollerMultiplier);
motorArmRollerLower.Set (ARM ROLLER LOWER IN SPEED*doubleRollerMultiplier);
else {
motorArmRo
motorArmRo

rUpper.Set (0);
rLower.Set (0);

